

PLAIN TEXT RADIATION STUDY OF TSEC/KL-7
(AF̄SAM 7)
general
The TSEC/KI-7 is a literal cipher machine designed for off-line use. It can encipher or decipher at any speed up to 60 words per minute and can be operated by either keyboard or punched tape input. The enciphered and deciphered text is printed on gummed paper tape.

The print wheel on the TSEC/KL-7 rotates continously, therefore It employs the "print-on-the fly" method. The print hammer is activated by. the print-magnet. The objective of this analysis was to deterinine what information could be obtained from the radiated signal from the print magnet. Mr. Collins, NSA311, has indicated that the print-magnot signal is detectable approximately 25 feet from the equipment. Fro this analysis the signal was picked up from a direct connection to the print magnet.

The print wheel is directly comected to the motor and any variation in motor speed causes a corresponding change in the speed of the print wheel. A second objective was to deterndine the variation in the motor apeed for a given message, the primary cause of this variation, and how the shunt wound motor, now ueed on TSEC/KILT, compered with a governed motor in respect to these features.

ANALYSIS

Tape imput was employed for the analysis. The information to be analysed (plain-text) was punched on tape and'this tape was enciphered through the machine, printing the cipher text on gurumed paper tape.

LIBRARY MO. S-60,081

TAOP-GEGRITM-

This cipher text was then used to piunch a second tape which was deciphered through the machine. It is during this deciphering operation that plain-text radiation from the print magnet is present. This plaintext signal, along with a one kc (kilocycle) sine wave, was filmed from a dual beam scope. The number of cycles of the one ke signal was counted, determining the time interval between consecutive print-outs.

For the initial analysis a typical military message of approximately 70 characters was filmed. The intervals between print-out were recorded, Figure I. The speed of the print wheel, given in the maintenance mamal for TSEC/KI-7, is 2200 rpm. The time per revolution of the print wheel is 27.27 ms (milliseconds). Since there are 38 characters on the periphery of the print wheel, 0.7177 ms are required for each character to pass the print hammer.

The interval readings were reduced modulo 27.27 , the time for one revolution, leaving a residue which is the number of milliseconds past the previous character printed. These time intervals were converted to the corresponding number of characters by dividing by 0.7177. At this point, given the printwwheel sequence (Figure 3) and the first character of the message, theoretically the entire massage could be read without any difficulty; but because of variation in the speed of the print wheel, the number of characters from the film residue vary from the actual number as given by the message.

Krs. Esther Cox, NSA-314, analyzed this data by assuming possible words and trying to fit them to the sequence of residues. After several

LIBRARY*NO.S60,081

TOP-SECRET

hours she was unable to recover any portion of the message. Further study was made on this massage by comparing the calculated residue with the film residue; this was done by subtracting the film residue from the calculated residue, Figure I. (The calculated residue is determined by multiplying the time per character by the interval on the print wheel for successive pairs of characters of the massage.) This difference showed an average bias of 2.163 ms , or approdmately three characters. When this blas was removed by adding - 2.163 ms to each film residue, Mrs. Cox was still unable to recover the plain text after three hours. In order to speed up the analysis, because of Mrs. Cox's resignation, she was given three probable words, one of which was contained in the message. In a short time she recovered the remainder of the massage.

A second set of films was run to obtain information about the variation in motor speed. Two different motors were used, the shunt wound motor now used on the TEC/KKH7, and a governed motor. Two pairs of films were run, that is, the same material was deciphered using each motor; these pairs were compared. The pairs were (1) decipherment of all spaces, and (2) decipherment of a message. Over the operating range 21 to 31 volts the shunt wound motor speed could vary to the extent that it caused the print wheel to be in an improper position when the print hamer would strike, thus producing unclear or improper print-outs. The use of a governed motor would be a solution to this problem, if it did not seriously effect the security of the

LIBRARE NO S60,081

equipment. With this in mind further analysis was carried out, and is included in the remainder of this report.

In the comparison of the first pair of massages (all spaces) the objective was to determine variations in motor apeed. The decipherment of enciphered spaces was used so that the print wheel would make an integral number of revolutions between print-outs; therefore the only difference in time between prints would be due to variation in motor speed. The analysis of the shunt wound motor indicates the average time between print-outs is 185.2 ms , with a range from 182.0 ms , to 188.0 ms . This is a variation of approximately $41 / 2$ characters from the mean. The 185.2 ms represents 7 revolutions, or 26.46 ms per revolution, which gives an average print-wheel speed of 2269 rpm , whereas the maintenance manual indicates 2200 rpm. If at the beginning of a message several repetitions of one character (say space) were enciphered; this, when deciphered, would be valuable in calculating the print-wheel speed, which would be ia much oloser approximation than the speed given in the manual, thus improving the analysis.

Using the governed motor the average time between print-outs was 190.0 ms , with range from 189.5 ms to 190.5 ms . This is a variation of less than one character from the mean. Actually this variation mis be less since part of it could be caused by the fact that it was difficult to read the film more accurately than 0.5 ms .

A second message was filmad when the TSEC/KI-7 was operated by the shunt would motor. The data is recorded in Figure 2. It may be

LIBRARY NO S60,081

20P-90GRI

observed that the first 21 readings ara oither approximately 188 ms or approximately 214 ms , indicating that the bame character had been deciphered, and the print wheel made respectively 7 or 8 revolutions. (188 ms corresponds approximately to 7 revolutions of the print wheel where the $\mathbf{2 2 0 0} \mathbf{~ r p m ~ s p e a d ~ g i v e n ~ b y ~ t h e ~ m a n u a l ~ i s ~ u s e d .) ~ T h e s e ~ f i r s t ~} 21$ readings were averaged and the print-wheel apeed was calculated to be 2239 rpm , resulting in 26.81 ms per revolution and 0.7053 ms per character.

Analysis of thfs message was done by Miss Terese Himeau, NSA-314. The solution method was based on the theory that, if all the intervals between print-outs had been the true distance between plain letters, the plain text could be recovered in the following way.

Consider the print wheel in terms of the location of its letters (Figure 3). Then, given the successive intervals ($i_{1}, i_{2}, i_{3}, \ldots \ldots, i_{n}$ where n is the number of letters in the message) between printed characters, which is the film residue in number of characters in Figure 2, choose an arbitrary location on the print wheel for the logical firat letter of the message (say at position ϕ, which is a "space"). Derive the mumerical sequence composed of partial sums $i_{1}, i_{1}+i_{2}$, $i_{1}+i_{2}+i_{3}, \ldots \ldots, i_{1}+i_{2}+\ldots+i_{n}(\bmod 38)$. This sequence will represent the locations, each varying by a constant, reflecting the distance from the chosen first letter to the tmie one, on the print wheel, of corresponding letters of plain text. Convert that sequence to the corresponding literal values from the known print wheel, mixed alphabet. That stream becomes the "pseudo-plain text." Let that "plain"

LIBRARY NO S60,081
be the firat row of matrix 38 cells deep. Each succeeding row will be a slide of one from the preceeding sequence, where the first Xetter of each row is assumed to have been one letter beyond that of the row above, for all possible 38 first letter assumptions. In other words; each colum becomes an inscription of the print-wheel alphabet, beginining with the letter designated in row one and continuing cyolically to row 38. The row beginning with the correat first letter will then contain the actual plain text, assuming that the oxiginal intervile were exact, that is there was no variation in speed of the print whsel.

In actuality, it was necessary to contend with a degree of variance which required making up the full matrix and scanning all its rows for portions which were words, or resembled part-words. Unce euch a segment was located, attempte were mede to extend hordzcnially the portion in both directions, by considering the adjacent columns as possibly displaced a few positions up or down, 1.e. suarching for good text continuing in the rows nearby. Fron previous analyais it was found that a jump of five rows was possible, but several jumps of IIve, or jumps greater than five appeared to be unreasonable. Several apparent possibilities extendrd for a stretch but had to be discarded when unreasonable "fumps" (errors in computed intervals) made continuance unfeasible. When the correct text was hit upon it could be extended the entire width of the matrix without having to jump too many rows between any two columns. Approxdmately 30 hours were required to complete the entire analysis of this message.

LIBRARY NO S60,081

UKUSA-344

TOP-BEGRET

Figure 4 lists the date from a filmed mesage where the governed motor was used on the TSEC/KL-7. This message was also analyzed by Miss Kimeau, using the same method as previously indicated. An approximation for the print-wheel speed was obtained from previous data, where the decipherment of "all spaces" was filmed using this same motor; the print-wheel speed was 2217 rpm , or 27.06 ms per revolution and 0.7122 ms per character. Notice in Figure 5 how closely the film residue and calculated residue agree. As a result, whon the first few columen of the matrix were written out, it was obvious which row contained the message.

Since the variation was small, it was only necessary to write out several rows above and below the row that theoretically contained the messages. The complete analysis for this message required two hours.

Up to this point it has been determined that the speed of the governed motor is constant enough to enable casy reading of a message, whereas the shunt wound motor has greater variation in apeed, making analysis more difficult.

It was suspected that the variation in motor speed was a function of the number of rotors that stepped. To verify this the message indicator was set up on the machine, and each successive setting was recorded; from this the motion for each decipherment was deterndned, giving the number of rotors stepping for each encipherment. This sequence of numbers was properly aligned with the variations (calculated residue minus film residue, Figure 2), and it may be observed that there ie high correlation between the number of rotors that atep and the LIBRARI NOS 60,081

POP-SEGRA1

print-wheel speed; that is, when the maximum number of rotors step there is a large negative deviation from the mean in print-wheel speed, and when the minimum number of rotors step the deviation from the mean speed is positive. It may be possible, with more precise recording and measuring devices, to get accurate information on the number of rotors that step.

For this analysis tape input was used, thus making the time intervals between print-outs relatively constant; that is, the print wheel would make 6 or 7 revolutions plus the distance it had to go from the previous character printed to the next one to be printed. If keyboard operation were employed, the number of revolutions of the print wheel would vary a great deal, due to the irregularity in typing speed of the operation. This would cause the variation in print-wheel apeed to have more influence, adding to the difficulty of the analysis. CONCLUSION

The print magnet on the TSEC/KL-7 radiates a signal which is detectable approximately 25 feet from the equipment. During the deciphering operation the signal indicates the plain text that is being printed on the gumed paper tape. Analysis of this signal, recorded during decipherment, showed that the plain text could be recovered. When the shunt wound motor was used on the equipment approximately 30 hours were required to recover the plain text by hand methods. When a governed motor was used only 2 hours were required to recover plain text because of the regularity of the print-wheel speed. LIBRARY NOS60,081

20P SEARET
UKUSA-344
Mr. Joseph Collins, NSA-3ll, indicated that available through radiation, and detectable at the same distance as the printamagnet signal, is information that would enable us to determine the change in printwheel speed between print-outs. With this information avallable the analysis would be trivial.

It has been determined that there is a high correlation between the number of rotors atepping and the variation in the spesd of the print wheel.

Mussages deciphered by keyboard input rather than punched tape, used in the provious analysis, would be more difficuit to analyse due to longer intervals between characters allowing more aceumulated variation in the print-wheel speed.

HOP SEOR	RECORDED DATA AND CALCULATIONS FROM FILM OF DECIPHERED				
	$\frac{8}{\text { a }}$	T WOLID	2 WAS USE	THE EQUIPK	
1		C	D	E	F
Text of Message	Character Interrals on Print wheel	Film Readings \qquad	Film Residue \qquad (ms)	Calculated Residues (ms)	Column E Minus Column D
T	17	204.5	10.8	12.4	- 1.6
H	7	274.5	8.5	5.1	- 3.4
R	25	210.0	16.3	18.2	1.9
\mathbf{E}	36	193.0	27.0	26.2	- 0.8
5	0	194.0	0.3	0	-0.3
	29	188.0	22.0	21.1	-0.9
P	2	197.5	3.8	1.5	- 2.3
L	31	192.0	26.0	22.6	- 3.4
A	30	192.0	26.0	21.8	- 4.2
N	4	172.5	6.5	2.9	- 3.6-
${ }^{5}$	18	205.0	11.3	13.1	1.8
8	18	$206.0{ }^{\circ}$	12.3	13.1	0.8
	11	178.5	12.5	8.0	- 4.5
5	27	190.0	24.0	19.7	- 4.3
I	21	185.5	19.5	15.3	- 4.2
G	16	205.5	11.8	11.7	- 0.1
H	36	195.0	1.3	26.2	- 2.8
T	31	192.0	26.0	22.6	- 3.4
E	30	191.0	25.0	21.8	- 3.2
D	21	183.5	17.5	15.3	- 2.2
	8	199.0	5.3	5.8	0.5
F	28	189.0	23.0	20.4	- 2.6
L	5	199.0	5.3	3.6	- 1.7
I	23	187.0	21.0	16.8	- 4.2
I	30	192.0	26.0	21.8	- 4.2
N	19	208.5	14.8	13.8	- 1.0
G	35	169.0	3.0	25.5	- 5.2
	12	204.0	10.3	8.7	- 1.6
\pm	33	193.0	27.0	24.0	- 3.0
0	9	201.5	7.8	6.6	- 1.2
W	37	170.0	4.0	26.9	- 4.8
	35	219.0	25.3	25.5	0.2
0	4	175.0	9.0	2.9	-6.1
∇	32	190.0	24.0	23.3	-0.7
E	11	201.5	7.8	8.0	0.2
\boldsymbol{R}	2	196.0	2.3	1.5	-0.8

Figure 1.
LIBRARY MO,S60,081
(Continued on page 11)

10P-98078	RECORDED DATA AND CALCULATIONS FROM FILM OF DECIPHEPTED				
	MESSAGE. THE	T WOUND M	R WAS US	ON THE ERUIP	
A	B	C	D	E	\boldsymbol{F}
	Character	Film	Film	Calculated	Column :
Text of Message	Intervals on	Readings	Reaidue	Residues	Minus
	Print Wheel.	(ms)	(ms)	(ms)	Column
	27	188.0	22.0	19.7	- 2.3
B	34	195.0	1.3	24.8	- 4.2
A	29	190.0	24.0	21.1	- 2.9
\mathbf{Y}	31	190.0	24.0	22.6	- 1.4
	20	183.0	17.0	14.6	-2.4
S	27	213.0	19.3	19.7	0.4
T	28	188.0	22.0	20.4	- 1.6
0	25	187.0	21.0	18.2	-2.8
P	36	194.0	0.3	26.2	- 1.8
	36	194.0	0.3	26.2	- 1.8
P	2	198.0	4.3	1.5	- 2.8
R	9	177.0	11.0	6.6	- 4.4
E	36	194.0	0.3	26.2	- 1.8
s	18	206.0	12.3	13.1	0.8
U	23	184.5	18.5	16.8	- 1.7
M	19	184.0	18.0	13.8	- 4.2
A	32	193.0	27.0	23.3	- 3.7
B	9	203.5	9.8	6.6	- 3.2
L	37	195.5	1.8	26.9	- 2.2
\mathbf{Y}	23	185.5	19.5	16.8	- 2.7
	20	183.5	17.5	14.6	-2.9
		Figure 1.			$-123.3=$

Motor speed assumed = 2200 rpm
27.67 ms per revolution of print-wheel
0.728 ms per character

6 revolutions of print wheel - 166.0 ms
7 revolutions of print- wheel $=193.7 \mathrm{~ms}$
8 revolutions of print- wheel = 221.3 ms
$\frac{-123.3}{57}=-2.163 \mathrm{~ms}$ average bias per letter of message.
$\frac{2.163}{0.728}=2.97$ characters, average bias per letter of message.

11
TOP SECRREN

TOMRE

舞OR GEGREP RECORDED DATA AND CALCUIATIONS FEOM FILM OF DECIPHERED MESSACE. THE SHUNT WOUND MOTOR WAS USED ON THE EOULPYIENT:

A	B	C	D	\boldsymbol{E}	F	0	H
Intervals	Film Readings (ms)	Filin Residue (ms)	Film Residue (Number of Qharacters)	$\begin{aligned} & \mathbf{M} \\ & \mathbf{E} \\ & \mathbf{S} \\ & \mathbf{S} \end{aligned}$	Actual Residue (Number of Oharacters)	Colum F Minus Column D	Number of Rotors Stepping
1	214.0	26.4	37	A \mathbf{G}	0	1	3
2	188.0	0.4	1	E	0	-1	5
3	188.5	0.9	1		0	-1	5
4	188.5	0.9	1		0	- 1	5
5	189.5	1.9	3		0	- 3	5
6	189.5	1.9	3		0	- 3	6
7	213.5	25.9	37		0	1	3
8	186.0	25.2	36		0	2	3
9	187.0	26.2	37		0	1	5
10	186.5	25.7	36		0	2	3
11	213.0	25.4	36		0	2	4
12	185.5	24.7	35		0	3	3
13	186.5	25.7	36		0	2	4
14	188.0	0.4	1		0	- 1	5
15	188.5	0.9	1		0	-1	5
16	215.0	0.6	1		0	-1	5
17	186.0	25.2	36		0	2	3
18	187.0	26.2	37		0	1	4
19	187.5	26.7	0		0	0	4
20	189.5	1.9	3		0	- 3	6
21	217.0	2.6	4		0	- 4	5
22	176.0	15.2	22	T	17	- 5	6
23	193.0	5.4	8	H	7	-1	3
24	205.5	17.9	25	E	23	- 2	5
25	182.5	21.7	31		29	- 2	6
26	207.5	19.9	28	A	25	- 3	5
27	192.5	4.9	7	L	8	1	3
28	186.5	25.7	36	L	0	2	4
29	197.5	9.9	14	I	15	1	4
30	187.5	26.7	38	E	37	- 1	
31	175.5	14.7	21	S	18	- 3	6
32	197.0	9.4	13		11	-2	5
33	207.5	19.9	28	A	25	- 3	5
34	177.0	16.2	23	R	24	1	4
35	188.0	0.4	1	\mathbf{E}	36	- 3	6

Figure 2.
(Continued on page 13)
LIBRARY NQ 600,081
IOP SLCREYCONTROL NUMBER $1 / / D-55-1147$

RECORDED DATA AND CALCULATIONS FROM FILM OF DECLPHERED MESSAGE THE SHUNT WOUND ROTOR WAS USED ON THE EDUIPMENT.

Figure 2.
(Continued on page 14)

UKUSA-344

TOP GFGREP RECORDED DATA AND CALCULATIONS FROM FILM OF DECI PHERED MESSAGE. THE SHUNT WOUND FOTOR WAS USED ON THE ERUI PMENT.

Figure 2.
(Continued on page 15)
LIBRARY NOS60,081

MOP SEORET RECORDED DATA AND CALCULATIONS FROM FILM OF DECIPHERTD MESSAGE THE SHUNT WOUND MOTOR WAS USED ON THE EOUIFMENT.

A	B	C	D	\mathbf{E}	F	G	H
Intervals	Film Readings (ms)	Film Residue (ms)	Film Residue (Number of Charactore)	$\begin{aligned} & \mathbf{M} \\ & \mathbf{E} \\ & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{A} \end{aligned}$	Actual Residue (Number of Charactera)	Columa F Minus Column D	Number of Rotors Stepping
				$\underset{\mathbf{E}}{\mathbf{G}}$			
106	205.0	17.4	25		27	2	
107	200.5	12.9	18	T	17	-1	
108	192.0	4.4	6	H	7	1	
109	175.5	14.7	21	\boldsymbol{E}	23	2	
110	204.0	16.4	23		29	6	
111	198.5	10.9	15	K	20	5	
112	174.0	13.2	19	0	22	3	
113	218.0	3.6	5	R	7	2	
114	184.0	23.2	33	\underline{L}	36	3	
115	195.0	7.4	10	A	16	6	
116	187.5	26.7	38	\mathbf{N}	4	4	
117	183.0	22.2	31	S	36	5	
118	192.0	4.4	6		11	5	
119	200.0	12.4	18	T	17	- 1	
120	202.5	14.9	21	0	25	4	
121	181.5	20.7	29		34	5	
122	204.0	16.4	23	H	24	1	
123	200.0	12.4	18	0	18	0	
124	180.0	19.2	27	L	29	2	
125	188.0	0.4	1	D	35	- 4	
126	190.5	2.9	4		8	4	
127	216.0	1.6	2	0	4	2	
128	176.5	15.7	22	F	24	2	
129	188.5	0.9	1	F	38	- 1	
130	194.0	6.4	9		10	1	
131	199.0	11.4	16	T	17	1	
132	192.5	4.9	7	H	7	0	
133	201.5	13.9	20	E	23	3	
134	178.5	17.7	25		29	4	
135	209.0	21.4	30	C	32	2	
136	193.0	5.4	8	0	10	2	
137	179.0	18.2	26	M	27	1	
138	187.5	26.7	38	M	38	0	
139	200.0	12.4	18	I	17	- 1	
210	186.5	25.7	36	E	37	1	

Figure 2.
(Continued on page 16) LIBRARY NO S60,081

Opp-secher Figure 2. (Continued from page 15)

Motor apeed calculated from first 21 entries in column A - 2239 rpm
26.81 ms per revolution of print-wheel
0.7053 ms per character

6 revolutions of print- wheel $=160.8 \mathrm{~ms}$
7 revolutions of print wheel = 187.6 mg
8 revolutions of print wheel $=214.4$ ms
$\frac{93}{140}=0.664$ character, average bias per letter of message.

LIBRARY NOS60,081

TOP-9EORTI

Letter Location $\varnothing 1 \begin{array}{lllllllllllllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18\end{array}$
 Sequence

Letter Location 19202122232425262728293031323314353637
Print Wheel
Sequence

$\begin{array}{lllllllllllllllllll}2 & K & 5 & 6 & X & H & A & G & S & F & N & D & M & C & L & B & J & V & -\end{array}$

Arbitary Character Location for Print Wheel Sequence.

Figure 3.

MOP-SECPEMF RECORDED DATA AND CALCULATIONS FROM FLLM OF DECI PHERED MESSAGE. THE GOVERNED MOTOR WAS USED ON THE RGUIPMIENT.

TOP SEGRET - RECORDED DATA AND CALCULATIONS FROM FILM OF DECIPFERED MESSAGE. THE GOVERNED ILOTOR WAS USED ON THE ERUI PMENT.

-

Motor speed calculated from film of "all spaces" filmed using the governed motor = 22017 rpm. 27.06 mes per revolution of printwheel
0.712 ms per character

6 revolutions of print wheel $=162.4 \mathrm{~ms}$.
7 revolutions of print wheel $=189.4 \mathrm{~mm}$.
8 revolutions of print wheel $=216.4$ ms
$-\frac{1101}{68}=-0.166$ ms average bias per letter of message.
$\frac{-0.166}{0.712}=0.233$ oharioter, average bias per letter of message.

Donald E. Scinumanior NSA-314 2 August 1955

LIBRARY NO S60,081

